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1. INTRODUCTION 

Snow avalanches are a complex and dynamic natu-
ral hazard, responsible for an average of approxi-
mately 140 recorded fatalities annually in North 
America and Europe (Jamieson et al., 2010; Techel 
et al., 2016; Colorado Avalanche Information Center, 
2023). In the majority of avalanche accidents back-
country recreationists are the victims and the ava-
lanche is commonly triggered by a member of the vic-
tim’s party (Schweizer and Lütschg, 2001). Terrain 
selection is the primary tool for managing avalanche 
risk when travelling in the backcountry. A wide range 
of factors need to be considered to select appropriate 
terrain, including current avalanche conditions, slope 
incline, forest density, aspect, elevation, and poten-
tial for overhead hazards or terrain traps. The dy-
namic nature of avalanche hazard conditions and 
sheer number of influences on avalanche terrain haz-
ard make choosing appropriate terrain challenging.  

Due to the complexity of the terrain selection pro-
cess, there is a desire to develop meaningful deci-
sion-making aids for backcountry recreationists. Ex-
isting tools such as the Graphical Reduction Method 
(Munter, 1997), Avaluator (Haegeli et al., 2006), or 
Skitourenguru (www.skitourenguru.ch) are intended 
to help recreationist make informed decisions based 

on basic condition information, such as avalanche 
danger, and terrain information, primarily based on 
slope incline. While these tools are effective for gen-
eral recreationists, their simplicity makes them inap-
propriate for more complex decision-making scenar-
ios such as in the context of professional guides and 
advanced recreationists.  

For mechanized ski guides in Canada, the decision-
making process includes an added layer of opera-
tional considerations which increase complexity. 
Over decades of practice, guides have established 
sophisticated methods for selecting appropriate ter-
rain specific to their operational context. One exam-
ple is the daily practice of run coding, where guides 
determine if a run is closed (red), open for guiding 
(green), or not-considered (black) as part of their 
morning meetings (Israelson, 2015). This process 
helps get the guiding team on the same page for the 
day and establishes a list of potential terrain that has 
been deemed appropriate for the day’s conditions. 
Run list coding during the morning meeting gives the 
opportunity for a consensus based decision process 
and helps limit emotional and time pressures that can 
impact decision-making in the field. 

Quantitatively capturing the run list coding decision-
making process requires a nuanced model that can 



 

 

consider a wide variety of factors. Prior research has 
used regression analysis as a method for capturing 
decision-making processes (Sterchi et al, 2019; 
Thumlert et al., 2018), which assumes that the deci-
sion to open or close a run can be represented as a 
linear combination of factors. These approaches pro-
vided a meaningful starting point for capturing the 
complexity of guiding decisions but are limited by the 
modelling methods. Data-driven machine learning 
methods (e.g., Sterchi and Haegeli, 2019) have also 
shown promise but are prone to detecting spurious 
relationships, and the black box nature of the algo-
rithms make them difficult to understand and trust. 
Bayesian networks (BN) offer an attractive alterna-
tive to the existing methods due to their ability to use 
expert knowledge to model complex decision pro-
cesses.  

The objective of this paper is to present a BN based 
decision-making model for run list coding at a mech-
anized guiding operation. We explore the factors that 
influence run list decisions and the relationships 
within the decision-making process. The quantitative 
foundation of the BN is based on 7 seasons of oper-
ational data as well as high resolution avalanche ter-
rain modelling. We also test the use of the BN as a 
decision support tool for predicting run codes based 
on current conditions and local run characteristics. 

2. METHODS 

2.1 Bayesian networks 

Bayesian networks (BN), also known as belief net-
works or probabilistic graphical models, are a type of 
statistical model that are used to represent and ana-
lyze uncertain complex relationships among multiple 
variables that include both inputs and outputs. The 
foundation of a BN is called a directed acyclic graph 
(DAG), which illustrates the variables (nodes) and re-
lationships between variables (arcs). The assump-
tions of a Bayesian Network are that the arcs be-
tween nodes represent relationships, the graphical 
structure cannot contain any cycles, and nodes that 
are not connected by an arc are assumed to be con-
ditionally independent given their parents (Fenton & 
Neil, 2019; Scutari, M. and Denis, J., 2021). One ma-
jor advantage of a Bayesian Network over other 
types of modern machine learning algorithms is that 
the structure of the network can be constructed 
based on input from domain experts, which allows 
the network to take on a form which is authentic to 
real world decision-making thought processes.  

The quantitative foundation of the model is based on 
conditional probability tables (CPT) for each node, 
which can be estimated manually or based on ob-
served data. This type of model has been applied in 
a variety of fields, including medical diagnosis and 
operational risk analysis (Fenton and Neil, 2019). 
Once a BN has been estimated, it can be used for a 

variety of tasks related to probabilistic inference, pre-
diction, and decision support, which make BNs well 
suited to our task of modeling an uncertain decision-
making scenario.  

 

Figure 1: Simple BN example illustrating conditional 
probability tables. 

As a simple example of a BN, consider the probability 
of surface hoar formation given wind speed and sky 
cover (Figure 1). The CPT for the parent nodes, sky 
cover and wind speed, are based on their observed 
or estimated frequencies. The CPT for the child 
node, surface hoar, includes each combination of 
levels from the parent nodes. This means that CPTs 
can grow very large for nodes with many parents or 
with parent nodes that have many levels. Based on 
the CPT for surface hoar, when conditions are calm 
and clear the conditional probability of widespread 
surface hoar growth is 70 %.  

2.2 Study area 

Canadian Mountain Holidays (CMH) Galena Lodge 
is a mechanized skiing operation located in the Sel-
kirk Mountains near Trout Lake, BC, Canada. The 
Selkirk Mountains typically have a transitional snow-
pack, prone to persistent weak layers of surface hoar 
and faceted layers associated with icy crusts (Hae-
geli & McClung, 2007). Most of the terrain in the CMH 
Galena tenure is forested, but there are also high al-
pine zones with glaciated ski runs. Within their 
roughly 1200 km2 tenure are 295 individual ski runs, 
which are individually coded as black, red, or green 
each day.  

2.3 Decision-making data 

Capturing the critical factors for the CMH Galena run 
list decision-making process required a variety of dif-
ferent data sets which can be grouped into factors 
that characterize the terrain within each ski run or 
characterize the current conditions. In addition, oper-
ational logistics play a large role in the decision-mak-
ing process for mechanized guides. 

Run characteristics 

The data we used to characterize avalanche terrain 
at CMH Galena include elevation, forest cover, po-
tential avalanche release areas, and runout impact  



 

 

Figure 2: Avalanche hazard indication mapping outputs with forest density (top left), potential release areas 
(top right), RAMMS impact pressure (bottom left), PRA and runout with GPS tracking data (bottom right).

pressures. Elevation data come from a SPOT 6 sat-
ellite stereophotogrammetry 5 m DEM and forest 
cover is estimated using land cover classification of 
Rapid Eye 5 m satellite imagery (Sykes et al., 2022). 
We used a potential release area (PRA) model to es-
timate the extent and size of avalanche start zones 
based on slope angle, aspect, curvature, roughness, 
and forest density (Bühler et al., 2018, Sykes et al., 
2022). To quantify exposure to overhead hazard, we 
used RAMMS (Christen et al., 2010, Bühler et al., 
2022) to simulate the runout distance, velocity, im-
pact pressure, and flow height for every individual av-
alanche originating from the 111,937 PRA polygons 
identified in the CMH Galena tenure. Our simulations 
were based on a frequent avalanche scenario that 
used a release depth of 50 cm. 

Starting in the winter of 2015/2016 the Simon Fraser 
University Avalanche Research Program has collab-
orated with  several mechanized ski guiding opera-
tions in Western Canada to collect GPS tracking in-
formation. The GPS trackers are custom designed 
units which continuously track guides over the course 
of a week (Thumlert et al., 2018). At CMH Galena we 
have collected 15,111 GPS tracks over 7 seasons (1 
season is missing due to COVID-19 restrictions). We 
leverage the GPS tracking data in our run list deci-
sion-making model by using the GPS track coordi-
nates to extract terrain characteristics for each run. 
This method is more accurate than using the prede-
fined run polygons (Figure 2) because it limits the 
spatial extent of the terrain characterization to only 
the portion of the run polygon that has been skied by 
a guide during the period of record.  

Since the unit of decision-making for the run list cod-
ing is an individual ski run, we needed to simplify the 
terrain information for each run into a single number 
summary for each terrain characteristic. For eleva-
tion we specified the elevation band (alpine, treeline, 
below treeline) with the largest proportion of GPS lo-
cations within each run as the primary elevation 
band. Forest cover was summarized based on the 
percentage of GPS locations that are forested and 
split into categories of 0-25%, 25-50%, 50-75%, or 
75-100%. PRA and runout zones were summarized 
by taking the 95th percentile of the distribution for 
each run and then categorizing each run by PRA size 
(0-10,000 m2, 10,000-15,000 m2, 15,000-20,000 m2, 
> 20,000 m2) and runout pressure (0-50 kPa, 50-
100 kPa, 100-150 kPa, > 150 kPa). Using the 95th 
percentile gives an estimate of the higher end of av-
alanche release area and runout exposure. 

The final component of run characterization comes 
from survey data capturing guides’ perception of the 
terrain (Wakefield et al., 2020). This survey contains 
a wealth of information from CMH guides but so far, 
we have incorporated only a limited subset including 
a) whether weak layers are intentionally managed by 
destroying them on the surface using skier traffic, 
b) whether a run has significant crevasse hazard, 
and c) the approximate flight distance required to ac-
cess each cluster of ski runs within the tenure. These 
factors help to incorporate real world operational con-
siderations that have an impact on the decision-mak-
ing process which are independent from the terrain 
hazard or avalanche hazard conditions.  



 

 

Avalanche conditions data 

There are a multitude of condition factors that could 
impact run coding at CMH Galena, but in this manu-
script we only present a relatively sparse model that 
focuses on the major decision drivers. We selected 
the variables based on the operational experience of 
Roger Atkins and also looked for relationships within 
the data. The highest level conditions variables we 
included in the present study are a) height of new 
snow over the past 72 hours (HN72), b) time of sea-
son (early-winter, mid-winter, etc.), c) total number of 
avalanche observations over the past 72 hours (0, 1-
5, 5-10, 10-20, >20), and d) maximum size of ava-
lanche observations in the past 72 hours (D1-1.5, 
D2-2.5, D3-3.5, D4-5). These variables are calcu-
lated based on CMH Galena’s internal weather and 
avalanche safety observation records.  

To capture the guiding team’s understanding of the 
avalanche hazard conditions, we extracted ava-
lanche problem, likelihood, and size information from 
their morning assessments. We elected to separate 
likelihood and size information for persistent and 
non-persistent avalanche problems to capture the ef-
fect of different types of avalanche problems on the 
decision-making process more accurately. The vari-
ables included in our decision-making model repre-
sent a) whether a persistent or deep persistent ava-
lanche problem is present, b) the typical likelihood 
and maximum expected size for persistent avalanche 
problems, and c) the typical likelihood and maximum 
expected size for non-persistent avalanche prob-
lems. We elected not to include the avalanche dan-
ger rating in the model because the individual com-
ponents of the hazard assessment process (likeli-
hood and size) are more relevant to run list coding 
than the overall summary danger rating. 

Run coding 

The daily run codes are the output variables for this 
decision-making network. We split the possible out-
comes of run coding into two variables, one capturing 
whether a run was considered for the day (black vs 
not-black) and a second capturing whether the run 
was closed or open for guiding on that day (red vs 
green). Black codes represent non-events (i.e., de-
fault) describing the situation when guides do not 
think the run is worth discussing during their roughly 
15 minute run coding meeting. The reasons for not 
discussing a run (black code) include insufficient 
snow coverage on a run, the run being too far away 
given the current flying conditions, the terrain being 
obviously too hazardous to consider for the current 
conditions, or too much uncertainty for making an in-
formed decision. Hence, the causes of a run not be-
ing coded differ from a run being coded red versus 
green. Preferences and biases of individual guides 
can also impact whether a run is coded as black. 

We also included run coding variables from the prior 
day as input to the daily run code. This represents 
the iterative nature of the run coding where codes are 
updated daily based on prior observations and new 
information for the current day. Including these vari-
ables is realistic to the real world decision-making 
process and allows us to more explicitly identify peri-
ods of transition within the run coding. 

2.4 Decision-making network 

We designed and evaluated the BN in the R program 
for statistical computing (R Core Team, 2021) using 
the packages ‘bnlearn’ (Scutari and Denis, 2021), 
‘gRain’ (Højsgaard, S., 2012), ‘caret’ (Kuhn, M., 
2008), and ‘pROC’ (Robin et al., 2011). 

Design of network 

The main driver for deciding what nodes to include in 
the BN and how to set arcs between nodes was the 
expert opinion of Roger Atkins. The primary objective 
is to capture realistic patterns of decision-making in 
the arc pathways within the BN. We then use the data 
described in the previous section to calculate the 
conditional probability distributions of the BN based 
on the structure provided by our domain expert. 

We constructed the DAG based on the thought pro-
cess of using three different types of relationships to 
set arcs (Figure 3). First are arcs between run char-
acteristic nodes, which represent the natural physical 
relationships in avalanche terrain and operational re-
lationships in the guide survey nodes. Second are 
arcs between condition variables, which represent 
the relationships between observations and guides’ 
assessments, which are roughly modelled after the 
theoretical foundation of the conceptual model of av-
alanche hazard (Statham et al., 2010). Third are de-
cision arcs that connect nodes that could have a di-
rect impact on how a run is coded. Each of these 
three types of arcs are included in the BN for different 
purposes, but all are relevant for our decision-making 
scenario. 

Evaluation of network 

To assess how well our decision-making network 
matches real world decisions, we used the BN as a 
predictive tool to calculate daily probabilities of runs 
being coded black, red, or green based on run char-
acteristics and avalanche conditions. We used 70% 
(n = 188,654) of our dataset to estimate the BN 
model (i.e, calculate the conditional probability ta-
bles) and 30% (n = 80,854) to test the prediction ac-
curacy. Using the BN as a predictive tool can be done 
in a variety of different ways, we set the nodes ‘run 
considered’ (black vs not-black) and ‘run open [for 
guiding]’ (red vs green) as the output nodes and used 
all other nodes as inputs for the calculations. 

  



 

 

Figure 3: Directed acyclic graph (DAG) for run list decision-making model. Green nodes are condition varia-
bles, purple are run characteristics, and yellow are run code variables. Dashed arcs are based on hazard 
assessment, dotted arcs represent physical relationships between terrain nodes, and solid arcs represent de-
cision pathways.

Hence, for each run and day, the run characteristic 
nodes were set to the local values for a specific run 
and the condition nodes to the current conditions for 
that day to predict the run code. Based on the results 
of the predictions we calculated the area under the 
receiver operating curve (AUROC) to set the thresh-
olds for classifying the probability estimates into 
class estimates and used a confusion matrix to as-
sess the performance of the BN. 

 RESULTS 

2.5 Decision-making network 

Our decision-making network aimed at capturing the 
daily run list coding at CMH Galena contains 21 
nodes and 39 arcs (Figure 3). Overall, the network 
represents the complexity of the decision-making 
process by containing many potential pathways to 
the run coding nodes - run considered (runcon) and 
run open (runopen). This realistically represents the 
real world decision-making process, where the driv-
ing factor for the coding of runs depends on a multi-
tude of factors related to the current conditions and 
the local run characteristics. 

Input nodes - run characteristics 

The highest level node in the run characteristics is 
primary elevation band (elev). Elevation is connected 
by arcs to potential release area (pra), runout pres-
sure (runout), and percent of forest cover (forest). 
The relationships here assume that higher elevations 
are associated with larger avalanche release areas, 
higher potential impact pressures, and lower percent-
age of forested terrain. PRA is connected by arcs to 

runout and forest, indicating that larger release areas 
are associated with higher impact pressures and 
lower percentages of forested terrain. Runout pres-
sure has a relationship with both percentage of forest 
cover and whether runs are maintained using skier 
traffic (skitraf) by CMH guides. Based on conversa-
tions with Roger Atkins, overhead hazard and runout 
are major considerations when selecting runs to be 
mitigated by skier traffic. Their goal being to make 
those runs available for skiing during elevated ava-
lanche hazard conditions without being exposed to 
potential large natural avalanches releasing over-
head. Forest is also directly connected to skier traffic 
because forest cover can break up potential ava-
lanche start zones into multiple smaller start zones, 
which are more suitable for this type of mitigation. 
Flight distance from the CMH lodge also has an arc 
into skier traffic mitigation since this type of mitigation 
is only meaningful for more easily accessible runs 
closer to the lodge. 

Input nodes - conditions 

The relationships among the condition variables are 
driven by the avalanche hazard assessment process. 
The primary weather condition variable in the BN is 
the height of new snow within 72 hours (hn72). This 
captures the amount of new snow loading on top of 
the existing snowpack and has arcs connected to av-
alanche size, avalanche likelihood, status of persis-
tent or deep persistent avalanche problems, the like-
lihood of persistent avalanches, and the size of per-
sistent avalanches. Time of season (season) is a 
secondary condition variable that is oriented 



 

 

Figure 4: Initial state of the conditional probability tables for each node in the BN. Green color bar plots are 
weather or conditions observations, blue are avalanche hazard assessments, purple are avalanche run char-
acteristics, red are operational data, orange prior conditions, and yellow are output decision nodes.

towards the development of snowpack characteris-
tics over the course of a winter season. Season is 
connected to the status of deep persistent avalanche 
problems, which tends to be less likely in the early 
winter and more likely in the mid-winter, early-spring, 
and spring. The number of avalanche observations 
(axobnum) and maximum size of avalanche observa-
tions (axobsize) within 72 hours capture the guides’ 
field observations, with an arc connected from ava-
lanche size to number of avalanches. This arc sup-
ports the relationship that an increase in observed 
avalanche size is typically related to an increase in 
total number of observations. Arcs connect observed 
avalanche size to expected avalanche size for per-
sistent and non-persistent avalanche problems. Sim-
ilarly, arcs connect the number of observed ava-
lanches to expected avalanche likelihood for both 
persistent and non-persistent avalanche problems. 
The status of persistent and deep persistent ava-
lanche problems are each connected with arcs to 
persistent avalanche likelihood and size. 

Output nodes 

Whether a run is discussed on a given day (i.e., 
coded black or not) is represented by the run consid-
ered node (runcon). Input arcs for this node are hn72, 
time of season, crevasse (crev), flight distance, and 
whether the run was considered yesterday (runcony). 
Each of these input arcs represents an independent 
reason why a run could be coded black. 

The status of a run being closed (red) or open for 
guiding (green) is captured by the run open node. 
This node has input arcs from hn72, avalanche size, 

avalanche likelihood, persistent avalanche size, per-
sistent avalanche likelihood, runout, skier traffic miti-
gation, run considered, and the status of run open 
from the prior day (runopeny). By combining condi-
tion variables, run characteristics, and prior status we 
aimed to capture the range of potential factors that 
could impact run coding for different types of runs. 

2.6 Network evaluation 

The AUROC analysis for the ‘run considered’ node 
found and area under the curve of 0.92 and deter-
mined that if a run had a probability of ≥ 13.7% of be-
ing black then it should be classified black. The con-
fusion matrix showed that the overall accuracy of the 
black run coding is 87.6% (Table 1). Additional accu-
racy metrics are shown in Table 1, which provide in-
sight into how the model performs compared to the 
observed run coding from CMH guides and give es-
timates of how often the model is overpredicting 
(false positive rate) and underpredicting (false nega-
tive rate) the run coding.  

For the run open node we predict the probability of a 
run being closed (red) or open (green) for guiding. 
The AUROC analysis has an area under the curve of 
0.92 and determined the optimal classification 
threshold to be 47.9%. The overall accuracy for run 
open is 86.7% (Table 1). The true negative rate and 
true positive rate are very similar compared to the run 
considered node. However, the false positive rate is 
much higher for the run considered node, indicating 
that the model has a higher rate of overprediction for 
a run being coded black versus red. 



 

 

Table 1: BN predictive confusion matrix results. 

Output 
Node 

Overall 
Accu-
racy 

True 
positive 
rate 

True 
negative 
rate 

False 
posi-
tive 
rate 

False 
nega-
tive 
rate 

runcon 87.6 % 82.8 % 88.6 % 40.0 % 3.9 % 

runopen 86.7 % 84.7 % 87.6 % 24.9 % 7.2 % 

3. DISCUSSION 

Our primary focus in developing a decision-making 
network for the daily run list coding at CMH Galena 
was to have the structure of the model match the real 
world decision-making process as closely as possi-
ble. The overall prediction accuracy of roughly 87% 
illustrates that BNs have the potential to accurately 
capture complex decision processes based on the 
knowledge of domain experts. While the BN was de-
veloped based on the decision-making process at 
CMH Galena, the approach can be applied to other 
guiding operations based on their local run charac-
teristics and conditions.  

Compared to prior approaches to analyze decision-
making of mechanized guides which utilized regres-
sion analyses (Sterchi et al, 2019; Thumlert et al., 
2018), the results of our model are much more intui-
tive to interpret. Despite being a complex model with 
19 unique input nodes that are used to predict the run 
coding, the graphical structure of the model and care-
ful justification of relationships makes the BN digest-
ible for field practitioners, which improves the likeli-
hood of being adopted as an operational tool.  

While we are encouraged by the initial predictive per-
formance of the model, the false positive rate for pre-
dicting whether a run is considered and whether a run 
is closed is high, at 40% and 24.9% respectively. This 
means that the model is more likely to predict that a 
run is not considered (black) or that a run is closed 
(red) compared to the observed data. The tendency 
to overestimate black and red run coding could indi-
cate that our current model is missing critical deci-
sion-making factors. For practical purposes, coding a 
run as either black or red results in the run not being 
available for guiding that day, which means the BN 
trends towards predicting a conservative run list. 
From a risk management perspective, we would pre-
fer the model to be biased towards predicting more 
conservative run list codings. 

3.1 Applications 

Our BN could be deployed as a decision support tool 
that provides guides with predicted run code proba-
bilities for each run based on current conditions. Ap-
plying the BN in this way could expedite the run cod-
ing process and would ground guide’s decisions in 
the observed operational behavior that is captured in 
the 7 seasons of data that the model is based on. The 
model could also be used to develop tools to help 

train new guides based on the existing practices of 
the operation. 

To illustrate how a BN can be applied as a decision 
support tool, we can set evidence and observe 
changes in conditional probabilities of run codes. In 
the initial state, the BN predicts the probability of runs 
being closed is 42.2 % (Figure 4), which represents 
the average probability across all runs and all condi-
tions. If we want to explore the general probability of 
being closed for runs with very high runout exposure, 
we can set evidence in the network (runout = ‘vhigh’). 
The BN fixes the state of the runout node at ‘vhigh’ 
and propagates that information throughout the net-
work to update the conditional probability tables of all 
nodes. The updated probability of a run being closed 
is now 49.9% (i.e., above the AUROC threshold of 
47.9%), which means that these runs are generally 
coded closed (Figure 5). Setting evidence for more 
information about the conditions allows us to provide 
condition-specific run code estimates. For example, 
if hn72 is 40 cm, persistent avalanche likelihood is 
likely, and persistent avalanche size is D3-3.5 the up-
dated probability of a run being closed is 64.5% (Fig-
ure 5). As a counter example, during periods without 
active loading (hn72 = 0 cm) and lower likelihood for 
persistent avalanches (axlkp = unlikely) the probabil-
ity of runs with very high runout exposure being 
closed drops to 42.3% (Figure 5). By setting evi-
dence for specific run characteristics and condition 
information the BN produces more precise and real-
istic conditional probability estimates for run code.  

 

Figure 5: Run closed probability estimates with evi-
dence: 1) runout = ‘vhigh’ (left). 2) runout = ‘vhigh’, 
hn72 = 30-50 cm, axszp = ‘D3-3.5’ and axlkp = ‘likely’ 
(center). 3) runout = ‘vhigh’, hn72 = 0 cm, axszp = 
‘D3-3.5’ and axlkp = ‘unlikely’ (right).  

4. CONCLUSIONS 

This research illustrates how Bayesian networks can 
be applied as a tool to capture complex real world 
decision-making processes in the context of ava-
lanche risk management. We use a variety of input 
data sets to capture decision-making influences, in-
cluding weather and avalanche observations, ava-
lanche hazard assessments, avalanche terrain mod-
eling, GPS tracks, and guide survey data. The com-
bination of having a nuanced decision-making model 
that mimics the real world process and high quality 
input data allows us to predict run list coding at CMH 
Galena with accuracies of roughly 87%. 



 

 

Future research will aim to further refine this deci-
sion-making model and apply these methods to ad-
ditional decision-making scenarios encountered by 
mechanized ski guides, including daily run selection 
and slope scale terrain selection. The ability to work 
with expert guides to build a decision-making model 
that realistically captures their decision-making pro-
cess is the greatest single advantage of this method. 
Bayesian networks show great promise for eliciting 
expert-based avalanche risk management pro-
cesses and providing a quantitative framework to de-
velop decision support tools. Further applications 
could include capturing operational avalanche fore-
casting practices or decisions to open or close trans-
portation corridors. The development of decision 
support tools for these uncertain and often high con-
sequence risk assessments could help improve ac-
curacy, consistency, and transparency in the ava-
lanche industry.  

ACKNOWLEDGEMENT 

The study area for this research is located on ancestral and 
unceded territories of the Secwépemc, Ktunaxa, Sinixt, 
and Okanagan First Nations. This research has been sup-
ported by the Government of Canada Natural Sciences and 
Engineering Research Council via the NSERC Industrial 
Research Chair in Avalanche Risk Management at Simon 
Fraser University. The industry partners include Canadian 
Pacific Railway, HeliCat Canada, Mike Wiegele Helicopter 
Skiing, and the Canadian Avalanche Association. The re-
search program receives additional support from Ava-
lanche Canada and the Avalanche Canada Foundation.  

REFERENCES 

Bühler, Y., Bebi, P., Christen, M., Margreth, S., Stoffel, L., Stoffel, 
A., Marty, C., Schmucki, G., Caviezel, A., Kühne, R., Wohl-
wend, S., and Bartelt, P.: Automated avalanche hazard indi-
cation mapping on a statewide scale, Nat. Hazards Earth Syst. 
Sci., 22, 1825-1843, 10.5194/nhess-22-1825-2022, 2022. 

Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, 
L., and Christen, M.: Automated snow avalanche release area 
delineation - validation of existing algorithms and proposition 
of a new object-based approach for large-scale hazard indica-
tion mapping, Nat. Hazards Earth Syst. Sci., 18, 3235–3251, 
https://doi.org/10.5194/nhess-18-3235-2018, 2018. 

Colorado Avalanche Information Center: https://ava-
lanche.state.co.us/accidents/statistics-and-reporting/, last ac-
cess: 28 April 2023. 

Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical 
simulation of dense snow avalanches in three-dimensional ter-
rain, Cold Reg Sci Technol, 63, 1–14, 
https://doi.org/10.1016/j.coldregions.2010.04. 005, 2010. 

Fenton, N. and Neil, M.: Risk Assessment and Decision Analysis 
with Bayesian Networks, 2nd Edition, CRC Press, 
https://doi.org/https://doi.org/10.1201/9780367803018, 2019. 

Haegeli, P., Mccammon, I., Jamieson, B., Israelson, C., and Stat-
ham, G.: The Avaluator – a Canadian Rule-Based Avalanche 
Decision Support Tool for Amateur Recreationists, Proc. 2006 
Int. Snow Sci. Work. Telluride, Color., 254–263, 2006. 

Haegeli, P. and McClung, D. M.: Expanding the snow-climate clas-
sification with avalanche-relevant information: initial descrip-
tion of avalanche winter regimes for southwestern Canada, J 
Glaciol, 53, 266–276, 
https://doi.org/10.3189/172756507782202801, 2007. 

Højsgaard, S.: Graphical Independence Networks with the gRain 
Package for R, https://doi.org/10.18637/jss.v046.i10, 2012. 

Israelson, C.: A Suggested Conceptual Model for Daily Terrain 
Use Decisions at Northern Escape Heli-Skiing, Aval. J., 2015. 

Jamieson, B., Haegeli, P., and Gauthier, D.: Avalanche accidents 
in Canada, Canadian Avalanche Association, 2010. 

Kuhn, M.: Building Predictive Models in R Using the caret Pack-
age, J. Stat. Softw., 28, https://doi.org/10.18637/jss.v028.i05, 
2008. 

Munter, W., 1997. 3x3 Lawinen: Entscheiden in kritischen Situa-
tionen. Agentur Pohl & Schellhammer, Garmisch Patenkir-
chen, Germany 

R Core Team (2021). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria. URL https://www.R-project.org/. 

Schweizer, J. and Lütschg, M.: Characteristics of human-triggered 
avalanches, Cold Reg Sci Technol, 33, 147–162, 2001. 

Scutari, M. and Denis, J.-B.: Bayesian Networks With Examples in 
R, Second Edi., CRC Press, 2021. 

Statham, G., Haegeli, P., Greene, E., Birkeland, K., Israelson, C., 
Tremper, B., Stethem, C., McMahon, B., White, B., and Kelly, 
J.: A conceptual model of avalanche hazard, Nat. Hazards, 90, 
663–691, https://doi.org/10.1007/s11069-017-3070-5, 2018. 

Sterchi, R. and Haegeli, P.: A method of deriving operation-spe-
cific ski run classes for avalanche risk management decisions 
in mechanized skiing, Nat. Hazards Earth Syst. Sci., 19, 269–
285, https://doi.org/10.5194/nhess-19-269-2019, 2019. 

Sterchi, R., Haegeli, P., and Mair, P.: Exploring the relationship 
between avalanche hazard and run list terrain choices at a hel-
icopter skiing operation, Nat. Hazards Earth Syst. Sci., 19, 
https://doi.org/10.5194/nhess-19-2011-2019, 2019. 

Sykes, J., Haegeli, P., and Bühler, Y.: Automated snow avalanche 
release area delineation in data-sparse, remote, and forested 
regions, 22, 3247–3270, https://doi.org/10.5194/nhess-22-
3247-2022, 2022. 

Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, 
M., Valt, M., and Darms, G.: Avalanche fatalities in the Euro-
pean Alps: long-term trends and statistics, Geogr. Helv., 71, 
147–159, https://doi.org/10.5194/gh-71-147-2016, 2016. 

Thumlert, S. and Haegeli, P.: Describing the severity of avalanche 
terrain numerically using the observed terrain selection prac-
tices of professional guides, Nat. Hazards, 91, 89–115, 
https://doi.org/10.1007/s11069-017-3113-y, 2018. 

Wakefield, B.: Quantitative examination of terrain perception and 
its effect on ski run choices in expert heli-ski guides, Simon 
Fraser University, 2019. 

Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, 
Frédérique Lisacek, Jean-Charles Sanchez and Markus Mül-
ler (2011). pROC: an open-source package for R and S+ to 
analyze and compare ROC curves. BMC Bioinformatics, 12, 
p. 77.  DOI:10.1186/1471-2105-12-77 <http://www.bio-
medcentral.com/1471-2105/12/77/> 


